

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES THE MONOPHONIC DIAMETRAL PATH FIXING MONOPHONIC NUMBER OF A GRAPH

K. Ponselvi

Department of Mathematics, Thamirabharani Engineering College, Tirunelveli- 627358, India

ABSTRACT

For a connected graph G = (V, E), let P be amonophonic diametral path of G. A set $M \subseteq V(G) - V(P)$ is called aP-monophonic set of G if every vertex of G lies on a x - y monophonic pathwhere $x \in P$ and $y \in M$. The minimum cardinality of a P-monophonic set of G is P-monophonic number of G denoted by $m_p(G)$. A monophonic set of cardinality $m_p(G)$ is called a m_p -set of G. P-monophonic number of certain classes of graphs are studied. Connected graphs of order p with P-monophonic number 0 and p - 2 are characterized. It is shown that for integers with $2 \le a \le b$, there exists a connected graph G of order p, with m(G) = a and $m_P(G) = b$.

Keywords: *monophonic path, monophonic number,P-monophonic number* **AMS subject classification:** 05C38

I. INTRODUCTION

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology we refer to Harary [1,3].A chord of a path $u_0, u_1, u_2, \dots, u_n$ is an edge $u_i u_j$ with $j \ge i+2, (0 \le i, j \le n)$. An u-v path P is called a monophonic path if it is a chordless path. For two vertices u and v in a connected graph G, the monophonic distance $d_m(u, v)$ is the length of the longest u - v monophonic path in G. A u - v monophonic path of length $d_m(u,v)$ is called a u - v monophonic. For a vertex v of G, the monophonic eccentricity $e_m(v)$ is the monophonic distance between v and a vertex farthest from v. The minimum monophonic eccentricity among the vertices is the monophonic radius, $rad_m(G)$ and the maximum monophonic eccentricity is the monophonic diameter diam_m(G) of G. The monophonic distance of a graph is introduced in [4]. A monophonic set of G is a set $M \subseteq V$ such that every vertex of G is contained in a monophonic path joining some pair of vertices in M. The monophonic number m(G) of G is the minimum order of its monophonic sets and any monophonic set of order m(G) is a minimum monophonic set or simply am -set of G. The monophonic number of agraph is introduced in [2] and further studied in [5,6,7]. These concepts have many applications in location theory and convexity theory. There are interesting applications of these concepts to the problem of designing the route for a shuttle and communication network design. We further extend these concepts to the monophonic diametral path of G and present several interesting result.

The following theorem is used in sequel.

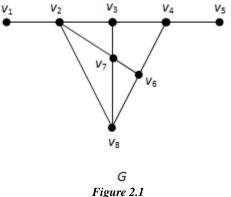
Theorem 1.1.[5] Each extreme vertex of a graph G belongs to every monophonic set of G.

II. THE DIAMETRAL PATH FIXING MONOPHONIC NUMBER OF A GRAPH.

Definition 2.1. Let *G* be a connected graph and *P* be amonophonic diametral path of *G*. A set $M \subseteq V(G)$ is said to be a *P*-monophonic set of *G* if every vertex of *G* lies on a monophonic path joining a vertex of *M* and a vertex of *P*. The *P*-monophonic number $m_p(G)$ of *G* is the minimum order of its *P*-monophonic sets and any *P*-monophonic set of order $m_p(G)$ is a minimum *P*-monophonic set or simply m_p -set.

ISSN 2348 – 8034 Impact Factor- 5.070

Example 2.2. For the graph G given in Figure 2.1, for the monophonic diametral path $P: v_1, v_2, v_3, v_6, v_4, v_5, M = \{v_3\}$ is a m_p -set of G so that $m_p(G) = 1$. Also for the monophonic diametral path $P: v_1, v_2, v_7, v_6, v_4, v_5, M_1 = \{v_3, v_8\}$ is a m_p -set of G so that $m_p(G) = 2$.



Theorem2.3.Let x - y be a monophonic diametral path *P* of a connected graph *G* of order at least 3. Then every extreme vertex (whether *x* or *y* is extreme or not) belongs to every *P* –monophonic of *G*.

Proof. Let x - y be a monophonic diametral path P and M be a P-monophonic set of G and v be an extreme vertex of G such that $v \neq x, v \neq y$. Let $\{v_1, v_2, ..., v_k\}$ be the neighbours of v. Suppose that $v \notin M$. Since M is a P-monophonic set of G, v lies on a P-monophonic path Q: $x = x_1, x_2, ..., v_i, v, v_j, ..., x_m = y$. where $x, y \in M$. Since $v_i v_j$ is chord of Q and so Q is not a monophonic path, which is a contradiction. Therefore $v \in M$.

Theorem 2.4.Let *G* be a connected graph with cut-vertices, *P* be a monophonic diametral path of *G*, and *M* be a *P*-monophonic set of *G*. If *v* is a cut-vertex of *G* such that $v \notin V(P)$, then every component of G-v contains an element of *M*.

Proof. Suppose that there is a component G_1 of G - v such that G_1 contains no vertex of M. By Theorem 2.3, G_1 does not contain any end-vertex of G. Thus G_1 contains at least one vertex, say u. Since M is a P – monophonic set, there exists vertices $x \in M$ and $y \in P$ such that u lies on the x-ymonophonic path $Q: x = u_0, u_1, u_2, ..., u_t = y$ in G. Let Q_1 be a x - u sub path of Q and Q_2 be a u - y subpath of Q. Since v is a cut-vertex of G, both Q_1 and Q_2 contain v so that Q is not a path, which is a contradiction. Thus every component of G - v contains an element of M.

Theorem 2.5.Let *G* be a connected graph and *P* be a monophonic diametral path of *G*. Then no cut-vertex of *G* belongs to any minimum P –monophonic set of *G*.

Proof. Let *M* be a minimum *P* – monophonic set of *G* and $v \in M$ be any vertex. Then $v \notin V(P)$. We claim that *v* is not a cut vertex of *G*. Suppose that *v* is a cut vertex of *G*. Let $G_1, G_2, ..., G_r (r \ge 2)$ be the components of G - v. By Theorem 2.3, each component $G_i(1 \le i \le r)$ contains an element of *M*. We claim that $M_1 = M - \{v\}$ is also P – monophonic set of *G*. Let *x* be a vertex of V(G) - V(P). Since *M* is a *P* –monophonic set of *G*, *x* lies on a monophonic path *R* joining a pair of vertices *u* of M and *v* of *P*. Assume without loss of generality that $u \in G_1$. Since *v* is adjacent to at least one vertex of each $G_i(1 \le i \le r)$, assume that *v* is adjacent to *z* in $G_k, k \ne 1$. Since *M* is a *P* –monophonic set, *z* lies on a monophonic path *Q* joining *v* and a vertex *w* of *M* such that *w* must necessarily belongs to G_k . Thus $w \ne v$. Now, since *v* is a cut vertex of $G, R \cup Q$ is a path joining *u* and *w* in *M* and thus the vertex *x* lies on this monophonic path joining a pair of vertices *u* and *w* of *M* also lies on a monophonic path joining two vertices of *M*. Thus we have proved that every vertex that lies on a monophonic path joining a pair of vertices *u* and *v* of *M* also lies on a monophonic path joining two vertices of *M*. Thus we have proved that every vertex that M_1 is a *P* –monophonic path G_1 is a *P* –monophonic path joining two vertices of *M* also lies on a monophonic path joining two vertices *u* and *v* of *M* also lies on the proved that every vertex that lies on a monophonic path joining a pair of vertices *u* of *G* lies on a monophonic path joining two vertices of *M* also lies on the fact that *M* is of *M*.

67

ISSN 2348 - 8034

Impact Factor- 5.070

a minimum monophonic set of G. Hence $v \notin M$ so that no cut vertex of G belongs to any minimum P-monophonic set of G.

Corollary 2.6. For any non-trivial tree T, $m_P(T) = k - 2$, where k is number of end vertices of T. **Proof.** This follows from Theorems 2.3 and 2.5.

Corollary 2.7.For the complete graph $G = K_p(p \ge 2)$, $m_p(Kp) = p - 2$. **Proof.**Let *P*: *x*, *y* be a monophonic diametral pathof K_p .Since every vertex of the complete graph, $K_p(p \ge 2)$ is an extreme vertex, the set $V(G) - \{x, y\}$ is the unique *P* -monophonic set of K_p . Thus $m_p(K_p) = p - 2$.

Theorem 2.8. For a cycle C_p , $p \ge 4$, $m_P(C_p) = 1$. **Proof.** Let *P* be a monophonic diametral path of *G* and $x \in V(G) - V(P)$. Then $M = \{x\}$ is a *P*-monophonic set of *G* so that $m_p(C_p) = 1$.

Theorem 2.9. For $G = K_{m,n}, m_p(G) = \begin{cases} 2, & 4 \le m \le n \\ 1, & m = 2 \text{ or } 3, n \ge 2 \end{cases}$

Proof.Let $u = u_1, u_2, ..., u_m$ and $v = v_1, v_2, ..., v_n$ be a bi-partite set of G. If m = 2 or $3, n \ge 2$, it is easily verified that $m_p(G) = 1$. So let $4 \le m \le n$.Let $P = u_1, v_1, u_2$ be a monophonic diametral path of G and $M = \{u_3, v_2\}$. Then it is clear that M is a P-monophonic set of G so that $m_p(G) \le 2$ we prove that $m_p(G) = 2$. It is clear that $m_p(G) \ge 1$. Suppose that $m_p(G) = 1$. Then there exists a P-monophonic set M'such that |M'| = 1. Let $M' = \{u'_i\}$. Then there exists $u_j \in U$ such that $u'_j \notin U$. It is clear that this u'_j not belongs to any monophonic joining vertex of P and a vertex of M'. If $M' = \{v'_i\}$ then there exists the $v'_j \in M'$. It is clear that v'_j not belongs to any monophonic joining vertex of P and a vertex of M', which is a contradiction. Therefore $m_p(G) = 2$.

Theorem 2.10. For any connected graph G of order $p, 0 \le m_p(G) \le p - d_m - 1$.

Proof. Any *P* -monophonic set is either empty or contains at least one vertex, it is clear that $m_p(G) \ge 0$. If $G = K_p$, then $m_p(G) = p - 2$ so that the result is trivial. Assume that *G* is non complete. Let *u* and *v* be two vertices of *G* such that $d_m(u, v) = d_m \ge 2$. Let $P: u = v_0, v_1, v_2, ..., v_{d-1}, v_d = v$ be a monophonic diamateral path. Let M = V(G) - V(P). Then *M* is *P* -monophonicset of *G*. Hence $m_P(G) \le p - d_m - 1$.

Remark 2.11. The bounds in Theorem 2.10 are sharp. For the path $G = P_p$, $m_p(G) = 0$ and for the complete graph $= K_p$, $m_p(G) = p - 2$. Also the bounds in Theorem 2.10 can be strict. For the graph *G* given in Figure 2.1, for the monophonic diametral path $P: v_1, v_2, v_7, v_6, v_4, v_5, d_m = 5, p = 8$ and $m_p(G) = 2$ so that $0 < m_P(G) < p - d_m - 1$.

Theorem 2.12. Let G be a connected graph. Then $m_p(G) = p - 2$ if and only if $G = K_p$. **Proof.** First assume that $G = K_p$. Then by Corollary 2.7, $m_p(G) = p - 2$. Suppose that G is non-complete then $d_m \ge 2$. By Theorem 2.10, $m_p(G) \le p - 3$, which is a contradiction. Therefore $G = K_p$.

Theorem 2.13. For any connected graph $G, m(G) \le m_p(G) + d_m + 1$. **Proof.** Let *P* be a x - y monophonic diametral path of *G* and *M* be a *P* -monophonic set of *G*. Then $M \cup V(G)$ is a monophonic set of *G*, it follows that $m(G) \le m_p(G) + d_m + 1$.

Theorem 2.14. For every integers with $2 \le a < b$, there exists a connected graph *G* monophonic diameter d_m such that m(G) = a and $m_p(G) = b$.

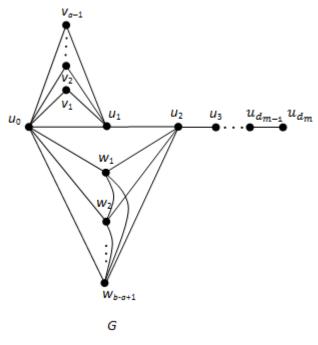
Proof.Let $P_{d_m}: u_0, u_1, \dots, u_{d_{m-1}}, u_{d_m}$ be a path of length d_m . Now, add (a-1) new vertices v_1, v_2, \dots, v_{a-1} to P_d and join each to u_1 and u_0 , thereby producing a graph H. Then add

b-a+1 new vertices $w_1, w_2, \dots, w_{b-a+1}$ to H and join each to both u_0 and u_2 , Also join each w_i and $w_i i \neq j$

(C)Global Journal Of Engineering Science And Researches

ISSN 2348 - 8034 Impact Factor- 5.070

obtaining the graph *G* of Figure 2.2 so that *G* has monophonic diameter d_m . Let $M = \{u_{d_m}, v_1, v_2, ..., v_{a-1}\}$ be the set of extreme vertices of *G*. By Theorem 1.1, *M* is contained in is contained in every monophonic set of *G* and so $m(G) \ge a$. It is clear that *M* is a monophonic set of *G* so that m(G) = a. Next we show that $m_p(G) = b$. Now $P: u_0, u_1, ..., u_{d_{m-1}}, u_{d_m}$ is a monophonic diameteral path of length d_m . Let $M_1 = M - \{u_{d_m}\}$. Then by Theorem 2.3, M_1 is a subset of every *P* -monophonic set of *G*. It is clear that M_1 is not a *P* -monophonic set of *G*. It is easily observed that $w_i(1 \le i \le b - a + 1)$ belongs to every *P* -monophonic set of *G* and som_p(*G*) $\ge b$. Now, $M_2 = M_1 \cup \{w_1, w_2, w_{b-a+1}\}$ is a *P* -monophonic set of *G* so that $m_p(G) = b$.



REFERENCES

- 1. F. Buckley and F. Harary, Distance in Graphs, Addition-Wesley, Redwood City, CA, 1990.
- 2. Esamel M. paluga, Sergio R. Canoy, Jr., Monophonic numbers of the join and Composition of connected graphs, Discrete Mathematics 307 (2007)1146 1154.
- 3. F. Harary, Graph Theory, Addision-Wesley (1969).
- 4. A. P. Santhakumaran and P. Titus, Monophonic Distance in Graphs, Discrete Mathematics, Algorithms and Applications 03, 159 (2011).
- 5. A. P. Santhakumaran, P. Titus and K. Ganeshamoorthy, On the Monophonic Number of a Graph, J.Appl.Math and informatics 32(1) (2011), 255-266.
- 6. A. P. Santhakumaran and P. Titus, The Vertex Monophonic Number of a Graph, DiscussionesMathematicae Graph Theory 32 (2), (2012), 191 204.
- 7. P. Titus and K. Ganeshamoorthy, The Detour Monophonic Number of a Graph, ArsCombinatoria, 84 (2013), 179–188.

69

